久久精品电影网_久久久久久电影_久久99精品久久久久久按摩秒播_天堂福利影院_国产男女爽爽爽免费视频_国产美女久久

FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY

FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY

分形——自然和社會(huì)中復(fù)雜的幾何圖形和標(biāo)度

期刊周期:Quarterly
研究方向:數(shù)學(xué)
影響因子:2.971
通訊地址:WORLD SCIENTIFIC PUBL CO PTE LTD, 5 TOH TUCK LINK, SINGAPORE, SINGAPORE, 596224
官網(wǎng):http://www.worldscientific.com/worldscinet/fractals
投稿地址:http://www.editorialmanager.com/fractals/login.asp
審稿速度:>12周,或約稿

  中文簡(jiǎn)介

在過(guò)去的幾十年里,涉及復(fù)雜幾何、模式和尺度的現(xiàn)象研究經(jīng)歷了驚人的發(fā)展。在這相對(duì)較短的時(shí)間內(nèi),幾何和/或時(shí)間尺度已經(jīng)被證明代表了在物理、數(shù)學(xué)、生物學(xué)、化學(xué)、經(jīng)濟(jì)學(xué)、技術(shù)和人類(lèi)行為等不同尋常的領(lǐng)域中發(fā)生的許多過(guò)程的共同方面。通常,一個(gè)現(xiàn)象的復(fù)雜性表現(xiàn)在其底層復(fù)雜的幾何結(jié)構(gòu)中,在大多數(shù)情況下可以用具有非整數(shù)(分形)維數(shù)的對(duì)象來(lái)描述。在其他情況下,事件在時(shí)間上的分布或各種其他數(shù)量的分布顯示特定的縮放行為,從而更好地理解決定給定流程的相關(guān)因素。在相關(guān)的理論、數(shù)值和實(shí)驗(yàn)研究中,將分形幾何和尺度作為一種語(yǔ)言,使我們能夠更深入地了解以前難以解決的問(wèn)題。其中,通過(guò)應(yīng)用尺度不變性、自親和性和多分形性等概念,對(duì)增長(zhǎng)現(xiàn)象、湍流、迭代函數(shù)、膠體聚集、生物模式形成、股票市場(chǎng)和非均勻材料有了更好的理解。專(zhuān)門(mén)研究上述現(xiàn)象的期刊的主要挑戰(zhàn)在于其跨學(xué)科的性質(zhì);我們致力于匯集這些領(lǐng)域的最新發(fā)展,以便就自然界和社會(huì)中復(fù)雜的時(shí)空行為采取各種方法和科學(xué)觀點(diǎn)進(jìn)行富有成效的相互作用。

  英文簡(jiǎn)介

The investigation of phenomena involving complex geometry, patterns and scaling has gone through a spectacular development in the past decades. For this relatively short time, geometrical and/or temporal scaling have been shown to represent the common aspects of many processes occurring in an unusually diverse range of fields including physics, mathematics, biology, chemistry, economics, technology and human behavior. As a rule, the complex nature of a phenomenon is manifested in the underlying intricate geometry which in most of the cases can be described in terms of objects with non-integer (fractal) dimension. In other cases, the distribution of events in time or various other quantities show specific scaling behavior, thus providing a better understanding of the relevant factors determining the given processes. Using fractal geometry and scaling as a language in the related theoretical, numerical and experimental investigations, it has been possible to get a deeper insight into previously intractable problems. Among many others, a better understanding of growth phenomena, turbulence, iterative functions, colloidal aggregation, biological pattern formation, stock markets and inhomogeneous materials has emerged through the application of such concepts as scale invariance, self-affinity and multifractality. The main challenge of the journal devoted exclusively to the above kinds of phenomena lies in its interdisciplinary nature; it is our commitment to bring together the most recent developments in these fields so that a fruitful interaction of various approaches and scientific views on complex spatial and temporal behaviors in both nature and society could take place.

  近年期刊自引率趨勢(shì)圖

  JCR分區(qū)

JCR分區(qū)等級(jí) JCR所屬學(xué)科 分區(qū) 影響因子
Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Q1 4.555
MULTIDISCIPLINARY SCIENCES Q2

  近年期刊影響因子趨勢(shì)圖

  CiteScore數(shù)值

CiteScore SJR SNIP 學(xué)科類(lèi)別 分區(qū) 排名 百分位
6.50 0.639 1.284 大類(lèi):Mathematics 小類(lèi):Geometry and Topology Q1 1 / 99

99%

大類(lèi):Mathematics 小類(lèi):Applied Mathematics Q1 39 / 590

93%

大類(lèi):Mathematics 小類(lèi):Modeling and Simulation Q1 32 / 303

89%

  相關(guān)數(shù)學(xué)SCI期刊推薦

SCI服務(wù)

搜論文知識(shí)網(wǎng) 冀ICP備15021333號(hào)-3

主站蜘蛛池模板: 99精品久久 | 亚洲激精日韩激精欧美精品 | 国产福利观看 | 91精品久久久久久久99 | 婷婷丁香激情 | 91天堂| 欧美黄色网| 91视频亚洲 | 人人看人人干 | 国产一二三区免费视频 | 日本韩国欧美在线观看 | 国产精品久久久久一区二区 | 中国一级特黄真人毛片免费观看 | 懂色中文一区二区在线播放 | 国产日韩欧美一区 | 日韩一级精品视频在线观看 | 亚洲激情综合 | 日本三级播放 | 操操日| 国产 日韩 欧美 制服 另类 | 日韩高清中文字幕 | 免费一级黄色 | 久久91av| 91精品入口蜜桃 | 99视频| 自拍偷拍第一页 | 在线欧美视频 | 亚洲一区成人 | 欧美日韩久久 | 爱爱视频在线观看 | 国产精品免费观看视频 | 91国在线视频 | 免费不卡av | 成人免费区一区二区三区 | 久久99精品久久久久蜜桃tv | 亚洲+变态+欧美+另类+精品 | 国产一区二区三区久久 | 国产精品99免费视频 | 九色视频网站 | 久久久夜夜夜 | 亚洲精品不卡 |