中文簡介
隨機矩陣理論(RMT)有著悠久而豐富的歷史,特別是近年來,在數學、科學和工程的許多不同領域都有重要的應用。RMT的范圍和應用包括經典分析、概率論、大數據統計分析,以及與圖論、數論、表示論的聯系,以及數學物理的許多領域。隨機矩陣理論的應用不斷涌現,歡迎新應用。一些例子是正交多項式理論、自由概率、可積系統、增長模型、無線通信、信號處理、數值計算、復雜網絡、經濟學、統計力學和量子理論。本刊還將考慮和出版專門討論當前感興趣的單一主題的特刊。
英文簡介
Random Matrix Theory (RMT) has a long and rich history and has, especially in recent years, shown to have important applications in many diverse areas of mathematics, science, and engineering. The scope of RMT and its applications include the areas of classical analysis, probability theory, statistical analysis of big data, as well as connections to graph theory, number theory, representation theory, and many areas of mathematical physics.Applications of Random Matrix Theory continue to present themselves and new applications are welcome in this journal. Some examples are orthogonal polynomial theory, free probability, integrable systems, growth models, wireless communications, signal processing, numerical computing, complex networks, economics, statistical mechanics, and quantum theory.Special issues devoted to single topic of current interest will also be considered and published in this journal.
近年期刊自引率趨勢圖
JCR分區
JCR分區等級 | JCR所屬學科 | 分區 | 影響因子 |
Q3 | PHYSICS, MATHEMATICAL | Q3 | 1.209 |
STATISTICS & PROBABILITY | Q3 |
近年期刊影響因子趨勢圖
CiteScore數值
CiteScore | SJR | SNIP | 學科類別 | 分區 | 排名 | 百分位 |
1.20 | 0.472 | 0.629 | 大類:Mathematics 小類:Algebra and Number Theory | Q2 | 54 / 113 |
52% |
大類:Mathematics 小類:Discrete Mathematics and Combinatorics | Q3 | 47 / 85 |
45% |
|||
大類:Mathematics 小類:Statistics and Probability | Q3 | 169 / 250 |
32% |
|||
大類:Mathematics 小類:Statistics, Probability and Uncertainty | Q3 | 103 / 152 |
32% |
相關數學SCI期刊推薦
copyright © www.56st48f.cn, All Rights Reserved
搜論文知識網 冀ICP備15021333號-3